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Abstract

Deep neural networks enable highly accurate image segmentation, but require large
amounts of manually annotated data for supervised training. Few-shot learning
aims to address this shortcoming by learning a new class from a few annotated
support examples. We introduce, for the first time, a novel few-shot framework, for the
segmentation of volumetric medical images with only a few annotated slices. Compared
to other related works in computer vision, the major challenges are the absence of
pre-trained networks and the volumetric nature of medical scans. We address these
challenges by proposing a new architecture for few-shot segmentation that incorporates
‘squeeze & excite‘ blocks. Our two-armed architecture consists of a conditioner arm,
which processes the annotated support input and generates a task representation. This
representation is passed on to the segmenter arm that uses this information to segment
the new query image. To facilitate efficient interaction between the conditioner and
the segmenter arm, we propose to use ‘channel squeeze & spatial excitation’ blocks
– a light-weight computational module – that enables heavy interaction between the
both arms with negligible increase in model complexity. This contribution allows us to
perform image segmentation without relying on a pre-trained model, which generally
is unavailable for medical scans. Furthermore, we propose an efficient strategy for
volumetric segmentation by optimally pairing a few slices of the support volume to
all the slices of query volume. We perform the experiments for organ segmentation
on whole-body contrast-enhanced CT scans from Visceral Dataset. Our proposed
model outperforms multiple baselines and existing approaches with respect to the
segmentation accuracy by a significant margin.
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Zusammenfassung

Tiefe neuronale Netze ermöglichen eine hoch präzise Bildsegmentierung, erfordern
aber große Mengen an manuell annotierten Daten für das überwachte Training. Das
Few-Shot Lernen zielt darauf ab, diesen Mangel zu beheben, indem es eine neue Klasse
aus einigen kommentierten Unterstützungsbeispielen lernt. Wir stellen zum ersten
Mal ein neuartiges few-shot Framework für die Segmentierung von volumetrischen
medizinischen Bildern mit nur wenigen Annotationen vor. Im Vergleich zu anderen
Arbeiten im Bereich Maschinelles Sehen, sind die größten Herausforderungen das
Fehlen vortrainierter Netzwerke und der volumetrische Charakter von medizinischen
Bildern. Wir stellen uns diesen Herausforderungen, indem wir eine neue Architektur
für die Few-Shot Segmentierung vorschlagen, die ‘squeeze & excite‘ Blöcke beinhal-
tet. Unsere zweiarmige Architektur besteht aus einem Konditionierer-Arm, der die
annotierte Unterstützungseingabe verarbeitet und eine abstrakte Darstellung erzeugt.
Diese Darstellung wird an den Segmentierungsarm weitergegeben, der diese Infor-
mationen verwendet, um das neue Eingabebild zu segmentieren. Um eine effiziente
Interaktion zwischen dem Konditionierer und dem Segmentierungsarm zu ermöglichen,
schlagen wir vor, ‘Channel Squeeze & spatial excitation‘ Blöcke zu verwenden – ein
leichtgewichtiges Berechnungsmodul – das eine starke Interaktion zwischen den beiden
Armen mit einer geringfügigen Erhöhung der Modellkomplexität ermöglicht. Unser
Beitrag ermöglicht es, Bildsegmentierung durchzuführen, ohne auf ein vorab trainiertes
Modell zurückzugreifen, welches für medizinische Bilder in der Regel nicht verfügbar
ist. Darüber hinaus schlagen wir eine effiziente Strategie für die volumetrische Segmen-
tierung vor, indem wir einige wenige Segmente des Unterstützungsbildes optimal mit
allen Segmenten des Eingabevolumens paaren. Wir führen Experimente zur Organseg-
mentierung an Ganzkörper-Kontrast-verstärkten CT-Scans aus dem Visceral-Datensatz
durch. Unser vorgeschlagenes Modell übertrifft vergleichbare Ansätze in Bezug auf die
Segmentierungsgenauigkeit deutlich.
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1 Introduction

Fully convolutional neural networks (F-CNNs) have achieved state-of-the-art perfor-
mance in semantic image segmentation for both natural [1, 2, 3, 4] and medical
images [5, 6, 7, 8]. Despite their tremendous success in image segmentation, they are of
limited use when only a few labeled images are available. F-CNNs are in general highly
complex models with millions of trainable weight parameters that require thousands
of densely annotated images for training to be effective. A better strategy could be
to adapt an already trained F-CNN model to segment a new semantic class from a
few labeled images. This strategy often works well in computer vision applications
where a pre-trained model is used to provide a good initialization and is subsequently
fine-tuned with the new data to tailor it to the new semantic class. However, fine-
tuning an existing pre-trained network without risking over-fitting still requires a fair
amount of annotated images (atleast in the order of hundreds). When dealing in an
extremely low data regime, where only a single or a few annotated images of the new
class are available, such fine-tuning based transfer learning often fails and may cause
overfitting [9, 10].

Few-shot learning is a machine learning technique that aims to address situations
where an existing model needs to generalize to an unknown semantic class with a
few examples at a rapid pace [11, 12, 13]. The basic concept of few-shot learning is
motivated by the learning process of humans, where learning new semantics is done
rapidly with very few observations, leveraging strong prior knowledge acquired from
past experience. While few-shot learning for image classification and object detection is
a well studied topic, few-shot learning for semantic image segmentation with neural
networks has only recently been proposed [9, 10]. It is an immensely challenging
task to make dense pixel-level high-dimensional predictions in such an extremely
low data regime. But at the same time, few-shot learning could have a wide impact
on medical image analysis, where scarcity of annotated data is a norm, due to the
dependence on medical experts for carrying out manual labeling. In this thesis, for the
first time, we propose a few-shot segmentation framework designed exclusively for
segmenting volumetric medical scans. A Key to making this possible is to integrate
the recently proposed ‘squeeze & excite’ blocks within the design of our new few-shot
architecture [14].

1



1 Introduction

Figure 1.1: Overview of the few-shot segmentation framework. The support set consists
of an image slice Is and the corresponding annotation for the new semantic
class Ls(α) (here α is the class liver). We pass the support set through the
conditioner arm, whose information is conveyed to the segmenter arm via
interaction blocks. The segmenter arm uses this information and segments a
query input image Iq for the class α generating the label map Mq(α). Except
for the support set, the few-shot segmenter has never seen annotations of a
liver before.

1.1 Background on Few-Shot Segmentation

Few-shot learning algorithms try to generalize a model to a new, previously unseen
class with only a few labeled examples by utilizing the previously acquired knowledge
from differently labeled training data. Fig. 1.1 illustrates the overall setup, where we
want to segment the liver in a new scan given the annotation of liver in only a single
slice. A few-shot segmentation network architecture commonly consists of three parts:
(i) a conditioner arm, (ii) a set of interaction blocks, and (iii) a segmentation arm. During
inference, the model is provided with a support set (Is, Ls(α)), consisting of an image Is

with the new semantic class (or organ) α outlined as a mask Ls(α). In addition, a query
image Iq is provided, where the new semantic class is to be segmented. The conditioner
takes in the support set and performs a forward pass. This generates multiple feature
maps of the support set in all the intermediate layers of the conditioner arm. This set of
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1 Introduction

feature maps is referred to as task representation as they encode the information required
to segment the new semantic class. The task representation is taken up by the interaction
blocks, whose role is to pass the relevant information to the segmentation arm. The
segmentation arm takes the query image as input, leverages the task information as
provided by the interaction blocks and generates a segmentation mask Mq for the query
input Iq. Thus, interaction blocks play a major role in passing the information from the
conditioner to the segmenter, which forms the backbone for few-shot semantic image
segmentation. Currently, weak interactions are used with a single connection at the last
layer of the network [9, 10].

1.2 Challenges for Medical Few-Shot Segmentation

Existing work in computer vision on few-shot segmentation processes 2D RGB images
and uses a pre-trained model for both segmenter and conditioner arm to aid the
training. Pre-trained models provide a strong prior knowledge with effective features
from the start of training. Hence, weak interaction between conditioner and segmenter
is sufficient to train the model effectively. The direct extension to medical images is
challenging due to the lack of pre-trained models. Instead, both the conditioner and
the segmenter need to be trained from scratch. However, training the network in the
absence of pre-trained models with weak interaction is prone to instability and mode
collapse.

Instead of weak interaction, we propose a strong interaction at multiple locations
between both the arms. The strong interaction facilitates effective gradient flow across
the two arms, which eases the training of both the arms without the need for any
pre-trained model. For effectuating the interaction, we propose our recently introduced
‘channel squeeze & spatial excitation’ (sSE) module [15, 14]. In our previous works, we
used the sSE blocks for adaptive self re-calibration of feature maps to aid segmentation
in a single segmentation network. Here, we use the sSE blocks to communicate between
the two arms of the few-shot segmentation. The block takes as input the learned
conditioner feature map and performs ‘channel squeeze’ to learn a spatial map. This is
used to perform ‘spatial excitation’ on the segmenter feature map. We use sSE blocks
between all the encoder, bottleneck and decoder blocks. SE blocks are well suited
for effectuating the interaction between both the arms, as they are light-weight and
therefore only marginally increase the model complexity. Despite which they can have
a strong impact on the segmenter’s features via re-calibration.

Existing work on few-shot segmentation focused on 2D images, while we are dealing
with volumetric medical scans. Manually annotating organs on all slices in 3D images
is time consuming. Following the idea of few-shot learning, the annotation should
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1 Introduction

rather happen on a few sparsely selected slices. To this end, we propose a volumetric
segmentation strategy by properly pairing a few annotated slices of the support volume
with all the slices of the query volume, maintaining inter-slice consistency of the
segmentation.

1.3 Contributions

In this work, we propose:

1. The first few-shot segmentation framework for volumetric medical scans.

2. Strong interactions at multiple locations between the conditioner and segmenter
arms, instead of only one interaction at the final layer.

3. ‘Squeeze & Excitation’ modules for effectuating the interaction.

4. Stable training from scratch without requiring a pre-trained model.

5. A volumetric segmentation strategy that optimally pairs the slices of query and
support volumes.

1.4 Overview

We discuss related work in Chapter. 2, present our few-shot segmentation algorithm in
Chapter. 3, the experimental setup in Chapter. 4 and experimental results and discussion
in Chapter. 5. We conclude with a summary of our contributions in Chapter. 6.

4



2 Prior Work

2.1 Few-Shot Learning

Methods for few-shot learning can be broadly divided into three groups. The first group
of methods adapts a base classifier to the new class [16, 11, 17]. These approaches are
often prone to overfitting as they attempt to fit a complex model on a few new samples.
Methods in the second group aim to predict classifiers close to the base classifier to
prevent overfitting. The basic idea is to use a two-branch network, where the first
branch predicts a set of dynamic parameters, which are used by the second branch
to generate a prediction [18, 19]. The third group contains algorithms that use metric
learning. They try to map the data to an embedding space, where dissimilar samples
are mapped far apart and similar samples are mapped close to each other, forming
clusters. Standard approaches rely on Siamese architectures for this purpose [20, 21].

2.2 Few-Shot Segmentation using Deep Learning

Few-shot image segmentation with deep neural networks has been explored only
recently. In one of the earliest work, Caelles et al. [22] leverage the idea of fine-tuning a
pre-trained model with limited data. The authors perform video segmentation, given
the annotation of the first frame. Although their model performed adequately in
this application, such approaches are prone to overfitting and adapting a new class
requires retraining, which hampers the speed of adaptation. Shaban et al. [9] use a
2-arm architecture, where the first arm looks at the new sample along with its label
to regress the classification weights for the second arm, which takes in a query image
and generates its segmentation. Dong et al. [23] extended this work to handle multiple
unknown classes at the same time to perform multi-class segmentation. Rakelly et
al. [10] took it to an extremely difficult situation where supervision of the support set is
provided only at a few selected landmarks for foreground and background, instead of
a densely annotated binary mask. Existing approaches for few-shot segmentation were
evaluated on the PASCAL VOC computer vision benchmark [9, 10]. They reported
low segmentation scores (mean intersection over union around 40%), confirming that
few-shot segmentation is a very challenging task.

5



2 Prior Work

All of the above mentioned papers depend on pre-trained models to start the training
process. Although access to pre-trained models is relatively easy for computer vision
applications, no pre-trained models are available for medical imaging applications.
Moreover, they use 2D RGB images, whereas we deal with 3D volumetric medical
scans. This is more challenging because there is no established strategy to select and
pair support slices with the query volume. This can lead to having situations where the
query slice can be very different from the support slice or may not even contain the
target class at all.

6



3 Methodology

In this section, we first introduce the problem setup, then detail the architecture of
our network and the training strategy, and finally, describe the evaluation strategy for
segmenting volumetric scans.

3.1 Problem Setup for Few-shot Segmentation

The training data for few-shot segmentation DTrain = {(Ii
T, Li

T(α))}N
i=1 comprises N

pairs of input image IT and its corresponding binary label map LT(α) with respect to
the semantic class (or organ) α. All the semantic classes α which are present in the
label map Li

T ∈ DTrain belong to the set LTrain = {1, 2, . . . , κ}, i.e., α ∈ LTrain. Here κ

indicates the number of classes (organs) annotated in the training set. The objective is
to learn a model F (·) from DTrain, such that given a support set (Is, Ls(α̂)) /∈ DTrain for
a new semantic class α̂ ∈ LTest and a query image Iq, the binary segmentation Mq(α̂)

of the query is inferred. Fig. 1.1 illustrates the setup for the test class α̂ = liver for
CT scans. The semantic classes for training and testing are mutually exclusive, i.e.,
LTrain ∩ LTest = ∅.

One fundamental difference of few-shot segmentation to few-shot classification or
object detection is that test classes LTest might already appear in the training data as the
background class. For instance, the network has already seen the liver on many coronal
CT slices as part of the background class, although liver was not a part of the training
classes. This forms a prior knowledge that can be utilized during testing, when only a
few examples are provided with the liver annotated.

3.2 Architectural Design

As mentioned earlier, our network architecture consists of three units: (i) a conditioner
arm, (ii) interaction blocks with sSE modules, and (iii) a segmenter arm. The conditioner
arm processes the support set to model how a new semantic class (organ) looks like
in an image. It efficiently conveys the information to the segmenter arm through the
interaction blocks. The segmenter arm segments the new semantic class in a new query
image by utilizing the information provided by the interaction blocks. Figs. 3.1 and 3.2
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3 Methodology
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3 Methodology

illustrate the architecture in further detail, which is also described in the following
sections.

In our framework, we choose the segmenter and conditioner to have a symmetric
layout, i.e., both have four encoder and decoder blocks separated by a bottleneck block.
The symmetric layout helps in having a strong interaction between matching blocks,
as feature maps have the same spatial size. In existing approaches, conditioner and
segmenter only interact via the final layer, before generating segmentation maps [9, 10].
Such weak interaction at a single location was sufficient for their application, because
they were able to use a pre-trained model, which already provides reasonably good
features. As we do not have a pre-trained network, we propose to establish a strong
interaction by incorporating the sSE blocks at multiple locations. Such interactions
facilitate training the model from scratch.

3.2.1 Conditioner Arm

The task of the conditioner arm is to process the support set by fusing the visual infor-
mation of the support image Is with the annotation Ls, and generate task-representative
feature maps, capable of capturing what should be segmented in the query image Iq.
We refer to the intermediate feature maps of the conditioner as task representation. We
provide a 2-channel input to the conditioner arm by stacking Is and binary map Ls(α).
This is in contrast to Shaban et al. [9], where they multiplied Is and Ls(α) to generate the
input. Their motivation was to supress the background pixels so that the conditioner
can focus on the patterns within the object (like eyes or nose patterns within a cat
class). This does not hold true for our scans due to the limited visual patterns within
an organ class. For example, voxel intensities within the liver are quite homogeneous
with limited edges. Thus, we feed both parts of the support set to the network and let
it learn the optimal fusion which provides the best possible segmentation of the query
image.

The conditioner arm has an encoder-decoder based architecture consisting of four
encoder blocks, four decoder blocks separated by a bottleneck layer, see Fig. 3.1. Both
encoder and decoder blocks consist of a generic block constituting a convolutional
layer with kernel size of 5× 5, stride of 1 and 16 output feature maps, followed by
a parametric ReLU activation function [24] and a batch normalization layer. In the
encoder block, the generic block is followed by a max-pooling layer of 2× 2 and stride
2, which reduces the spatial dimension by half. In the decoder block, the generic
block is preceded by an unpooling layer [4]. The pooling indices during the max-pool
operations are stored and used in the corresponding unpooling stage of decoder block
for up-sampling the feature map. Not only is the unpooling operation parameter free
which reduces the model complexity, but it also aids to preserve the spatial consistency

9



3 Methodology

for fine-grained segmentation. Furthermore, it must be noted that no skip connections are
used between the encoder and decoder blocks unlike the standard U-net architecture [5].
The reason for this important design choice is discussed in Sec. 5.2.

Figure 3.2: Illustration of the architecture of the ‘channel squeeze & spatial excitation’
(sSE) module, which is used as the interaction block within the few-shot
segmenter. The block takes a conditioner feature map Ucon and a segmenter
feature map Useg as inputs. ‘Channel squeeze’ is performed on Ucon to
generate a spatial map σ(q), which is used for ‘spatial excitation’ of Useg,
which promotes the interaction.

3.2.2 Interaction Block using ‘Squeeze & Excitation’ modules

The interaction blocks play a key role in the few-shot segmentation framework. These
blocks take the task representation of the conditioner as input and convey them to the
segmenter to steer segmentation of the query image. Ideally these blocks should: (i) be
light-weight to only marginally increase the model complexity and computation time,
and (ii) improve the trainability of network by improving the gradient flow.

We use the recently introduced ‘Squeeze & Excitation’ (SE) modules for this purpose.
SE modules are computational units to achieve adaptive re-calibration of feature maps

10



3 Methodology

within any CNN [25]. SE blocks can boost the performance of CNNs, while increasing
model complexity only marginally. For classification [25], the feature maps are spatially
squeezed to learn a channel descriptor, which is used to excite (or re-calibrate) the
feature map, emphasizing certain important channels. We refer to it as spatial squeeze
and channel excitation block (cSE). In our recent work, we extended the idea to
segmentation, where re-calibration was performed by squeezing channel-wise and
exciting spatially (sSE), emphasizing relevant spatial locations [14, 15]. In both the
cases, SE blocks are used for self re-calibration, i.e, the same feature map is used as
input for squeezing and excitation operations. However, here we propose to use SE
blocks for the interaction between the conditioner and the segmenter. The conditioner
feature maps are taken as input for the squeezing operation and its outputs are used to
excite the segmentation feature maps as detailed below.

Channel Squeeze & Spatial Excitation (sSE) The sSE block squeezes a conditioner
feature map Ucon ∈ RH×W×C′ along the channels and excites the corresponding seg-
menter feature map Useg ∈ RH×W×C spatially, conveying the information from the
support set to aid the segmentation of query image. H, W are the height and width
of feature maps, C′ and C are the number of channels for the conditioner and the
segmenter feature maps, respectively. Here, we consider a particular slicing strategy to
represent the input tensor Ucon = [u1,1

con, u1,2
con . . . , uj,ι

con, . . . , uH,W
con ], where uj,ι

con ∈ R1×1×C′

with j ∈ {1, 2, . . . , H} and ι ∈ {1, 2, . . . , W}. Similarly for segmenter feature map
Useg = [u1,1

seg, u1,2
seg . . . , uj,ι

seg, . . . , uH,W
seg ]. The spatial squeeze operation is performed using

a convolution q = Wsq ? Ucon with Wsq ∈ R1×1×C′ , generating a projection tensor
q ∈ RH×W . This projection q is passed through a sigmoid gating layer σ(·) to rescale
activations to [0, 1], which is used to re-calibrate or excite Useg spatially to generate

Ûseg = [σ(q1,1)u1,1
seg, . . . , σ(qj,k)u

j,ι
seg, . . . , σ(qH,W)uH,W

seg ]. (3.1)

The architectural details of this module are presented in Fig. 3.2.

3.2.3 Segmenter Arm

The goal of the segmenter arm is to segment a given query image Iq with respect to
a new, unknown class α, by using the information passed by the conditioner, which
captures a high-level information about the previously unseen class α. The sSE mod-
ules in the interaction block compresses the task representation of the conditioner and
adaptively re-calibrates the segmenter’s feature maps by spatial excitation.

The encoder-decoder architecture of the segmenter is similar to the conditioner, with
a few differences. Firstly, the convolutional layers of both the encoder and decoder

11



3 Methodology

blocks in the segmenter have 64 output feature maps, in contrast to 16 in the conditioner.
This provides the segmenter arm with a higher model complexity than the conditioner
arm. We will justify this choice in Sec. 5.3. Secondly, unlike the conditioner arm,
the segmenter arm provides a segmentation map as output, see Fig. 3.1. Thus a
classifier block is added, consisting of a 1× 1 convolutional layer with 2 output feature
maps (foreground, background), followed by a soft-max function for inferring the
segmentation. Thirdly, in the segmenter, after every encoder, decoder and bottleneck
block, the interaction block re-calibrates the feature maps, which is not the case in the
conditioner arm.

3.3 Training Strategy

We use a similar training strategy to Shaban et al. [9]. We simulate the one-shot
segmentation task with the training data DTrain in the following manner.

Batch Sampler In each iteration, we first randomly sample a label α ∈ LTrain. Next,
we randomly select 2 image slices and their corresponding label maps, containing the
semantic label α, from training data DTrain. The label maps are binarized representing
semantic class α as foreground and the rest as background. One pair constitutes the
support set (Is, Ls(α)) and the other pair the query set (Iq, Lq(α)), where Lq(α) serves
as ground truth segmentation for computing the loss.

Training The support pair (Is, Ls(α)) is provided as input to the conditioner arm. The
query image Iq is provided as input to the segmentation arm. The network predicts
the segmentation Mq(α) for the query image Iq for label α with one forward pass. We
use the Dice loss [6] as the cost function, which is computed between the prediction
Mq(α) and the ground truth Lq(α). The learnable weight parameters of the network
are optimized using stochastic gradient descent (SGD) with momentum.

3.4 Volumetric Segmentation Strategy

As mentioned in the previous section, the network is trained with 2D images as support
set and query. But, during the testing phase, a 3D query volume needs to be segmented.
Therefore, from the support volume, we need to select a sparse set of annotated slices
that form the support set. A straight forward extension for segmenting the query
volume is challenging as there is no established strategy to pair the above selected
support slices to all of the slices of query volume, which would yield the best possible
segmentation. In this section, we propose a strategy to tackle this problem.
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3 Methodology

Figure 3.3: Illustration of the few-shot volumetric segmentation strategy for k = 3. We
divide both the query volume and support volume into k group of slices.
The annotated center slice of the ith group in the support volume is paired
with all the slices of ith group of query volume to infer their segmentation.
This is done for i ∈ {1, 2, 3} and is passed to the few-shot segmenter for
segmenting the whole volume.

Assume we have a budget of annotating only k slices in the support volume, a query
volume is segmented with the following procedure, where the extent of the organs is
specified in both volumes.

1. Given a semantic class, we first indicate the range of slices (along a fixed orien-
tation) where the organ lies for both support and query volume. Let us assume
the ranges are [Ss, Se] for the support and [Qs, Qe] for the query volume. Here the
superscript indicates the start s and end e slice indices.

2. Based on the budget k, both ranges [Ss, Se] and [Qs, Qe] are divided into k
equi-spaced group of slices. Let us indicate the groups by [{Si

1}, . . . , {Si
k}] and

[{Qi
1}, . . . , {Qi

k}] respectively. Here the subscript indicates the group number.

3. In each of the k support volume groups, center slices [Sc
1, . . . , Sc

k] are annotated to
serve as the support set.

13



3 Methodology

4. We pair the annotated center slice Sc
j with all the slices of the group {Qi

j} for
all i ∈ {1, . . . , k}. This forms the input for the segmenter and the conditioner to
generate the final volume segmentation.

The overall process of volumetric evaluation is illustrated in Fig. 3.3. In our experi-
ments, we observed that if the support slice and query slice are similar, segmentation
performance is better than if they were very dissimilar. This can be intuitively under-
stood as the quality of support slice has a major impact on the segmenter’s performance.
In our evaluation strategy, for a fixed budget k, we made sure that the dissimilarity
between the support slice and the corresponding query slice is minimal.

14



4 Dataset and Experimental Setup

4.1 Dataset Description

We choose the challenging task of organ segmentation from contrast-enhanced CT
(ceCT) scans, for evaluating our few-shot volumetric segmentation framework. We use
the Visceral dataset [26], which consists of two parts (i) silver corpus (with 65 scans)
and (ii) gold corpus (20 scans). All the scans were resampled to a voxel resolution of
2mm3.

4.2 Problem Formulation

As there is no existing benchmark for few-shot image segmentation on volumetric
medical images, we formulate our own experimental setup for the evaluation. We use
the silver corpus scans for training (DTrain). For testing, we use the gold corpus dataset
where one volume is used to create the support set (Volume ID: 10000132_1_CTce_ThAb)
and evaluation is done on the remaining 19 volumes.

We consider the following six organs as semantic classes in our experiments:

1. Liver

2. Spleen

3. Right Kidney

4. Left Kidney

5. Right Psoas Muscle

6. Left Psoas Muscle

We perform experiments with 4 Folds, such that each organ is considered as an
unknown semantic class once per-fold. The training and testing labels for each of the
folds are reported in Tab. 4.1.
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4 Dataset and Experimental Setup

Table 4.1: Semantic labels used for training and testing in all the experimental folds.
Left and Right are abbreviated as L. and R. Psoas Muscle is abbreviated as
P.M.

Fold 1 Fold 2 Fold 3 Fold 4

Liver Test Train Train Train
Spleen Train Test Train Train
L./R. Kidney Train Train Test Train
L./R. P. M. Train Train Train Test

4.3 Hyperparameters for Training the Network

Due to the lack of pre-trained models, we could not use the setup from Shaban et al. [9]
for training. Thus, we needed to define our own hyperparameter settings, listed in
Table 4.2. Please note that the hyperparameters were estimated by manually trying
out different combinations, rather than employing a hyperparameter optimization
framework, which could lead to better results but is time-consuming at the same time.

Table 4.2: List of hyperparameters used for training the few-shot segmenter.

Hyperparameters Value

Learning Rate 0.01
Weight decay constant 10−4

Momentum 0.99
No. of epochs 10
Iterations per epoch 500
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5 Experimental Results and Discussion

5.1 ‘Squeeze & Excitation’ based Interaction

In this section, we investigate the optimal positions of the SE blocks for facilitating
interaction. Furthermore, we compare the performance of cSE and sSE blocks. Here, we
set the number of convolution kernels of the conditioner arm to 16 and the segmenter
arm to 64. We use k = 12 support slices from the support volume. Since the aim
of this experiment is to evaluate the position and the type of SE blocks, we keep the
above parameters fixed, but evaluate them later. With four different possibilities of
placing the SE blocks and two types cSE or sSE, we have a total of 8 different baseline
configurations. The configuration of each of these baselines and their corresponding
segmentation performance per fold is reported in Tab. 5.1.

Firstly, one observes that BL-1, 3, 5, 7 with sSE have a decent performance, whereas
BL-2, 4, 6, 8 have a very poor performance (less than 0.1 Dice score). This demonstrates
that sSE interaction modules are by far superior to cSE modules in this application of
few-shot segmentation. One possible reason might be the flow of gradients from the
segmenter to the conditioner. sSE connects the two arms through more units of the
hidden layer in comparison to cSE, thus facilitating proper training of the conditioner
by denser gradient flow.

Secondly, out of all the possible positions of the interaction block, BL-7, i.e., sSE
blocks between all encoder, bottleneck and decoder blocks achieved the highest Dice
score of 0.555. This performance is also consistent across all the folds. For Fold-1
(where liver is the test label), BL-1, BL-5 and BL-7 provided the same segmentation
performance. Whereas, BL-7 outperformed the remaining baselines for Fold-2 (spleen),
Fold-3 (L/R kidney) and Fold-4 (L/R psoas muscle) by a margin of 0.1 to 0.3 Dice
points. This might be related to the relative difficulty associated with each organ. Due
to the contrast and size, the liver is relatively easy to segment in comparison to spleen,
kidney, and psoas muscles . From these results, we conclude that interaction blocks
based on sSE are most effective and we use sSE-based interactions between all encoder,
bottleneck and decoder blocks in subsequent experiments.
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5 Experimental Results and Discussion
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5 Experimental Results and Discussion

5.2 Effect of Skip Connections in the Architecture

Due to the success of the U-net architecture [5], using skip connections in F-CNN
models has become a very common design choice. With skip connections, the output
feature map of an encoder block is concatenated with the input of the decoder block
with an identical spatial resolution. In general, this connectivity aids in achieving a
superior segmentation performance as it provides a high contextual information in the
decoding stage and facilitates the gradient flow. In our experiments, we intuitively
started off with having skip connections in both the conditioner arm and the segmenter
arm, but observed an unexpected behavior in the predicted query segmentation masks.
By including skip connections, the network mostly copies the binary mask of the
support set to the output. This is observed for all the folds both in train and test set.
We refer to this phenomenon as the copy over effect. A set of qualitative examples of
this is illustrated for each fold in Fig 5.1, where we see that, inspite of the support and
the query images having different shapes, the prediction on the query image is almost
identical to the support binary mask. We observed this for all the folds on both train
and test data.

We also performed a quantitative analysis to observe the effect on Dice scores due to
this copy over effect. Table 5.2 reports the performance with and without skip connections,
where we observe a 7% decrease in Dice points due to the addition of skip connections.
We also performed experiments by separately adding the skip connections in the
conditioner and the segmenter arm. We observe that the inclusion of skip connections
only in the conditioner arm reduced the performance by 5% Dice points, whereas
adding them only in the segmenter arm made the training unstable. For this evaluation,
the number of convolution kernels for conditioner and segmenter were fixed at 16 and
64, respectively, and the evaluation was conducted with k = 12 support slices.

5.3 Model Complexity of the Conditioner Arm

One important design choice is to decide the relative model complexity of the condi-
tioner arm compared to the segmenter arm. As mentioned in Sec. 1.1, the conditioner
takes in the support example and learns to generate task representation, which are passed
to the segmenter arm through interaction blocks. This is utilized by the segmenter to
segment the query image. We fix the number of kernels of the convolutional layers
(for every encoder, bottleneck and decoder) for the segmenter arm to 64. We use
this setting as this has proven to work good in our prior segmentation works across
different datasets [8, 14]. Then, we vary the number of kernels of the conditioner arm
to {8, 16, 32, 64}. The number of support slices was fixed to k = 12. We report the
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5 Experimental Results and Discussion

Table 5.2: The segmentation performance (per-fold and mean Dice score) on test scans,
with and without using skip connections within our few-shot segmenter. Left
and Right are abbreviated as L. and R. Psoas Muscle is abbreviated as P.M.

Skip Connections Dice Score on Test set

Conditioner Segmenter Liver Spleen L/R kidney L/R P.M. Mean

× × 0.685 0.605 0.437 0.491 0.555
X × 0.621 0.495 0.457 0.447 0.505
× X 0.101 0.025 0.026 0.020 0.043
X X 0.487 0.570 0.452 0.498 0.486

Table 5.3: Effect of model complexity of the conditioner arm (Number of convolution
kernels) on segmentation performance, provided a fixed model complexity
(Number of convolution kernels fixed to 64) of the segmenter arm. Left and
Right are abbreviated as L. and R. Psoas Muscle is abbreviated as P.M.

Channels in Dice Score on Test set

Conditioner Arm Liver Spleen L/R kidney L/R P.M. Mean

8 0.623 0.251 0.390 0.273 0.384
16 0.685 0.605 0.437 0.491 0.555
32 0.618 0.505 0.352 0.279 0.439
64 0.650 0.343 0.368 0.238 0.400

segmentation results of these settings in Table 5.3. The best performance was observed
for the conditioner with 16 convolution kernels. One possible explanation of this can
be that, too low conditioner complexity (like 8) leads to a very weak task representation,
thereby failing to provide a reliable support to the segmenter arm. Whereas, higher
conditioner arm complexity like 32 and even 64 (same as segmenter complexity) kernels,
might lead to improper training due to increased complexity under limited training
data and interaction. We fix the number of conditioner convolution kernels to 16 in our
following experiments.
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5 Experimental Results and Discussion

5.4 Effect of the number of Support Slice Budget

In this section, we investigate the performance when changing the budget for the
number of support slices k selected from the support volume for segmenting all the
query volumes. Here k can be thought of as the ‘number of shots’ for volumetric
segmentation. We vary k between {1, 3, 5, 7, 10, 12, 15, 17, 20} and report the per-fold
and overall mean segmentation performance in Table 5.4. The per-fold performance
analysis revealed that the minimum number of slices needed for a decent accuracy
varies with the size of the target organ to be segmented.

For Fold-1 (liver), one-shot volume segmentation (k = 1) yielded a Dice score of
0.666 which increased to 0.688 with k = 20. We observed a saturation in performance
(Dice score of 0.68) with only 3 slices. The target organ liver is comparatively larger in
volume and simple to segment, only k = 3 slices are needed for a decent segmentation.
The segmentation performance only marginally increased with higher value of k. For
Fold-2 (spleen), the segmentation performance initially increases with the increase in
the value of k and then the performance saturates with k ≥ 10 at a Dice score of 0.60.
The spleen is more difficult to segment than liver, thus requires more support. For
Fold-3 (right/ left kidney), we observe a similar behavior as Fold-2. The segmentation
performance increases initially with increase in the value of k and then saturates at a
Dice score of 0.44 (this is the mean between the two classes, left and the right kidney)
at k ≥ 10. Also for Fold-4 (right/ left psoas muscle), we see the Dice score saturates at
0.50 for k = 10. Overall mean Dice score across all the folds also saturates at 0.55 with
k = 10.

Based on these results, we conclude that k = 10 is the maximum number of support
slices required for our application, used in the next experiments.

5.5 Dependence on Support set

In all our previous experiments, one volume (10000132_1_CTce_ThAb) was used as a
support volume and the remaining 19 as query volumes for evaluation purposes. In
this section, we investigate the sensitivity of segmentation performance on the selection
of the support volume. In this experiment, we randomly choose 5 volumes as support
set. We select one at a time and evaluate on the remaining 15 volumes and report the
per-fold and global Dice scores in Table 5.5.

We observe that changing the support volume does have an effect on the segmentation
performance. In Fold-1 (liver), the performance varies by 6% Dice points across all the 5
selected support volume. This change is 5%, 8% and 5% Dice points for Fold-2 (spleen),
Fold-3 (R/L kidney), Fold-4 (R/L psoas muscle), respectively. The overall mean Dice
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5 Experimental Results and Discussion

Table 5.4: The segmentation performance (per-fold and mean Dice score) on test scans,
by varying the number of annotated slice (k) as support in the support volume.
Left and Right are abbreviated as L. and R. Psoas Muscle is abbreviated as
P.M.

No. of support Dice Score on Test set

slices (k) Liver Spleen L/R kidney L/R P.M. Mean

1 0.666 0.490 0.362 0.387 0.476
3 0.679 0.437 0.373 0.452 0.485
5 0.678 0.534 0.405 0.491 0.528
7 0.678 0.548 0.421 0.499 0.537

10 0.680 0.597 0.441 0.500 0.554
12 0.685 0.605 0.437 0.491 0.555
15 0.685 0.602 0.438 0.490 0.553
17 0.689 0.604 0.434 0.489 0.554
20 0.688 0.606 0.438 0.490 0.556

scores vary by 4% points. We conclude that it is important to select an appropriate
support volume that is representative of the whole query set. Yet, a good strategy for
making the selection remains as a future work. Nevertheless, our framework shows
some robustness to the selection.

5.6 Comparison with existing approaches

In this section, we compare our proposed framework against the other existing few-shot
segmentation approaches. It must be noted that all of the existing methods were
proposed for computer vision applications and thus cannot directly be compared
against our approach as explained in Sec. 1.2. Hence, we modified each of the existing
approaches to suit our application. The results are summarized in Table 5.6.

First, we try to compare against Shaban et al. [9]. Their main contribution was that the
conditioner arm regresses the convolutional weights, which are used by the classifier
block of the segmenter to infer the segmentation of the query image. As we do not have
any pre-trained models for our application unlike [9], we use the same architecture
as our proposed method for the segmenter and conditioner arms. No intermediate
interactions were used other than the final classifier weight regression. We attempted
to train the network on our dataset with a wide range of hyperparameters, but all the
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5 Experimental Results and Discussion

Table 5.5: The segmentation performance (per-fold and mean Dice score) on test scans,
by using different volumes (Volume ID indicated in the first column) as the
support volume. Left and Right are abbreviated as L. and R. Psoas Muscle is
abbreviated as P.M.

Support Dice Score on 15 Test set

Volume ID Liver Spleen L/R kidney L/R P.M. Mean

10000100_1_CTce_ThAb 0.748 0.550 0.445 0.454 0.550
10000106_1_CTce_ThAb 0.690 0.514 0.444 0.464 0.528
10000108_1_CTce_ThAb 0.718 0.560 0.406 0.465 0.537
10000113_1_CTce_ThAb 0.689 0.505 0.392 0.453 0.510
10000132_1_CTce_ThAb 0.694 0.533 0.369 0.501 0.524

settings led to instability while training. It must be noted that one possible source of
instability might be that we do not use a pre-trained model, unlike the original method.
This also substantiates our claim that, when training from scratch, spatial SE based
interaction at multiple locations between the two networks are essential.

Next, we compare our approach against Rakelly et al. [10]. Again, this approach is not
directly comparable to our approach due to the lack of a pre-trained model. One of the
main contributions of their approach was the interaction strategy between the segmenter
and the conditioner using a technique called feature fusion. They tiled the feature maps
of the conditioner and concatenated them with the segmenter feature maps. We
modified our model by introducing the concatenation based feature fusion instead of
sSE modules at multiple locations between the conditioner and segmenter arms. As we
have a symmetric architecture no tiling was needed. Similar to our proposed approach,
we introduced this feature fusion based interaction at every encoder, bottleneck and
decoder block. So, in this experiment, we are comparing our spatial SE based interaction
approach to the concatenation based feature fusion approach. The results are reported
in Table 5.6. We observe 19% higher Dice points for our approach.

Next, we attempted to create hybrid baselines by combining the feature fusion
approach [10] with classifier weight regression approach [9]. We observe that by doing
so the performance increased by 6% Dice points. Still, it had a much lower Dice score
in comparison to our proposed approach.

As a final baseline, we compare our proposed framework against the fine-tuning
strategy similar to [22]. For a fair comparison, we only use the silver corpus scans
(DTrain) and 10 annotated slices from the support volume (10000132_1_CTce_ThAb) for
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5 Experimental Results and Discussion

training. As an architectural choice, we use our segmenter arm without the SE blocks.
We pre-train the model using DTrain to segment the classes of LTrain. After pre-training,
we use the learnt weights of this model for initialization of all the layers, except for
the classifier block. Then we fine-tune it using the 10 annotated slices of the support
volume having a new class from LTest. We present the segmentation performance in
Table 4.1. Fine-tuning was carefully performed with a low learning rate of 10−3 for
10 epochs. Also, the 10 selected slices were augmented during the training process.
Still, except fold-1 (liver, Dice score 0.30) all the other folds had a Dice score lesser
than 0.01. Overall, this experiment substantiated the fact that fine-tuning under such a
low-data regime is ineffective, whereas our few-shot segmemtation technique is much
more effective.

5.7 Qualitative Results

We present a set of qualitative segmentation results in Fig. 5.2(a-d) for folds 1-4,
respectively. In Fig. 5.2(a), we show the segmentation of liver. From left to right,
we present the support set with manual annotation, query input with its manual
annotation, and prediction of the query input. We observe an acceptable segmentation
despite the differences in the shape and size of the liver in the support and the query
slices. Note that the only information the network has about the organ is from a single
support slice. In Fig. 5.2(b), we show a similar result for spleen. This is a challenging
case where the shape of spleen is very different in the support and query slices. Also,
there is a difference in image contrast between the support and query slices. There
is a slight undersegmentation of the spleen, but considering the weak support the
segmentation is surprisingly good. In Fig. 5.2(c), we present the results of left kidney.
Here we also observe a huge difference in the size of kidney in support and query
slices. The kidney appears as a small dot in the support, making it a very difficult
case. In Fig. 5.2(d), we show the segmentation for right psoas muscle. In this case, the
support and query slices are pretty similar to each other visually. The prediction from
our framework shows a bit of over-inclusion in the psoas muscle boundary but a decent
localization and shape. Overall, the qualitative results visually present the effectiveness
of our framework both under simple and very challenging conditions.
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6 Conclusion

In this thesis, we introduced a few-shot segmentation framework for volumetric medical
scans. The main challenges for extending the few-shot learning were the absence of
pre-trained models to start from, and the volumetric nature of the scans. We proposed
to use ‘channel squeeze and spatial excitation’ blocks for aiding proper training of
our framework from scratch. Also, we proposed a volumetric segmentation strategy
for segmenting a query volume scan with a support volume scan by strategic pairing
of 2D slices. We conducted experiments on contrast-enhanced CT scans from the
Visceral dataset for evaluating our framework. We compared our sSE based model to
the existing approaches based on feature fusion [10], classifier regression [9] and their
combination. Our framework outperformed all previous approaches by a large margin.

Besides comparing with the existing methods, we also provided detailed experiments
for architectural choices regarding the SE blocks, model complexity, and skip connec-
tions. We also investigated the effect on the performance of our few-shot segmentation
by changing the support volume and the number of budget slices from a support
volume.

The exposition of our proposed approach is very generic and can easily be extended to
other few-shot segmentation applications. Our approach is independent of pre-trained
model, which makes it very useful for non computer vision applications.
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1.1 Overview of the few-shot segmentation framework. The support set
consists of an image slice Is and the corresponding annotation for the
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generating the label map Mq(α). Except for the support set, the few-shot
segmenter has never seen annotations of a liver before. . . . . . . . . . . 2

3.1 Illustration of the architecture of the few-shot segmenter. To the left,
we show a block diagram with arrows illustrating the encoder-decoder
based conditioner arm (bottom) and segmenter arm (top). Interaction
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the right, the operational details of the encoder block, decoder block,
bottleneck block and the classifier block are provided. . . . . . . . . . . 8

3.2 Illustration of the architecture of the ‘channel squeeze & spatial exci-
tation’ (sSE) module, which is used as the interaction block within the
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3.3 Illustration of the few-shot volumetric segmentation strategy for k = 3.
We divide both the query volume and support volume into k group of
slices. The annotated center slice of the ith group in the support volume
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segmenter for segmenting the whole volume. . . . . . . . . . . . . . . . . 13

29



List of Figures
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5.2 Qualitative results of our few-shot segmenter. The sub-figures (a-d) refer
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